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Session 1 

09.00 Welcome by Professor David Bull, Director of Bristol Vision Institute, University of Bristol  
(to include house-keeping, code of conduct) 

 Chair: Dr Eleanor Caves, Marie Skłodowska-Curie Research Fellow, University of Exeter 

Presentations – 15 mins, plus 5 mins Q&A each 

09.10 Catherine Taylor, University of Bath, “An egocentric pipeline for transporting physical objects 
into virtual environments” 

09.30 Doug Sands, University of Bristol, “Countershading for concealment against multiple 
backgrounds” 

09.50 Martin Bossard, Cardiff University, “Is allocentric and egocentric visual information used during 
ongoing reaching movement?” 

Lightning presentations – 5 mins each 

10.10 Daria Burtan, University of Bristol, “Visual discomfort, not image statistics, affect gait kinematics” 

10.15 Jing Gao, University of Bristol, “Rotated bounding box-based CNN for Holstein Friesian cattle 
detection” 

10.20 Hugo Hammond, University of Bristol, “Developing continuous multidimensional measurements 
of audience immersion” 

10.25 Di Ma, University of Bristol, “BVI-DVC: A training database for deep video compression” 

10.30 Breakout session – all presenters from this session to ‘host’ a Zoom breakout room.  
Questions can also be asked at any time in the Slack channel. 

11.00 15 minutes break 

 

Session 2 

Presentations – 15 mins, plus 5 mins Q&A each 

11.15 Welcome back/ Chair: Marek Pedziwiatr, School of Psychology, Cardiff University 

11.20 Karin Kjernsmo, University of Bristol, “Do bees like shiny things?” 
 

11.40 Christian Wallis, Cardiff University, “Replicability and patterns of individual differences across 
four popular eye-tracking tasks” 

12.00 Milton Montero, University of Bristol, “Deep generative models as perceptual front-ends for 
decision-making” 

Lightning presentations – 5 mins each 

12.20 Angeliki Katsenou, University of Bristol, “Predicting the rate-quality convex hull across 
resolutions for adaptive video streaming” 

12.25 Mubaraka Muchhala, University of Bristol, “The geometry of high-level colour space” 
 

12.30 Aaron Zhang, University of Bristol, “Enhancing video compression through deep learning” 

12.35 Breakout session – all presenters from this session to ‘host’ a Zoom breakout room.  
Questions can also be asked at any time in the Slack channel. 

                     Bristol Vision Institute’s  

Online Vision Researchers Colloquium 2020 

Hosted via Zoom, supported by Slack. 

Online access provided once registered via Eventbrite. 

Supported by Slack 

https://www.eventbrite.co.uk/e/online-vision-researchers-colloquium-2020-tickets-104436989848


13.00 Lunch and break 

 

Session 3 

13.55 Welcome back/ Chair: Dr Annabelle Redfern, School of Psychological Science, University of 
Bristol 

Presentations – 15 mins, plus 5 mins Q&A each 

14.00 Dunia Gonzalez, University of Exeter, “Colour and motion vision in stomatopod crustaceans” 

14.20 Sandra Winters, University of Bristol, “Simulating the evolution of inter-specific mating signal 
diversity in guenons” 

14.40 Jake Deane, CAMERA - University of Bath, “DogDetector: animal segmentation using synthetic 
images and 3D generative models” 

15.00 Breakout session – all presenters from this session to ‘host’ a Zoom breakout room.  
Questions can also be asked at any time in the Slack channel. 

15.15 10 minutes break 

15.25 Introduction by Professor Iain Gilchrist, Professor of Neuropsychology, University of Bristol 
 

15.30 Keynote: Professor David Perrett, School of Psychology and Neuroscience, University of St 
Andrews, “Face and Body Perception” 

16:30 Wrap up – Professor Jonathan Erichsen, Professor of Visual Neuroscience, Cardiff University 

16:35 Informal networking on Zoom 

17:00 Event ends 

 

 

Before, during and after the event, please join in the discussions, share your photos 

and thoughts by linking to the Bristol Vision Institute Twitter account: 

@VisionInstitute.  

Please contact BVI if you have any questions, on bvi-enquiries@bristol.ac.uk.  
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Keynote: “Face and Body Perception” 

Professor David Perrett, School of Psychology and 

Neuroscience, University of St Andrews 

Abstract 

We readily make judgments of others but are unaware of the 
accuracy or the basis of our opinions. In this keynote, Professor 
Perrett will focus on the roles of skin tone, face shape and body 
shape in forming our impressions. 

Carotenoid pigments from fruit and vegetables in our diet 
impart yellowness (or a 'golden glow') to the skin. Carotenoid 
ornaments are used in many species to signal general health. In 
humans too, we find that carotenoid skin colour reflects 
multiple aspects of health, including aerobic fitness, body fat, 
stress, and sleep duration. 

The neural coding of face shape is such that exaggeration along 
dimensions to which brain cells are tuned increases cell 

responses. This coding may explain the improvement in speed of recognition when facial cues are 
caricatured. The coding may also enable the evolution of exaggerated features arising from sexual 
preferences (e.g., for enhanced sexual dimorphism) or from competition between individuals of the same 
sex. Both men and women have an exaggerated impression of the body shape desired by the other sex. Such 
misperception may be driven by competition. 

Perceptual judgments about health and attractiveness depend on underlying biological processes: dietary 
effects on skin colour, hormonal influences on facial growth, and fat and muscle contributions to body 
shape. Perception is thus based on cues to underlying biology. 

Biography 

BSc. Psychology, St Andrews (1976), D.Phil., University of Oxford (1981) 

Professor Perrett's doctoral studies were on single neurons and highlights included selective responses to 
faces and to familiarity. He set up a neurophysiology laboratory in St Andrews to develop these studies 
making discoveries of visual coding for faces, face identity, expression and attention direction, body 
movements including the biological motion of point light displays, and hand actions (the visual side of ‘mirror 
neurons’). 
 
With his colleagues, he devised computer graphic programs for automated caricatures and for manipulating 
facial shape, colour and texture. They used these to study visual aspects of attractiveness, individual 
recognition, aging, personality, expression of emotion, and most recently health. 
 
Find out more about Professor David Perrett: 
Professor Perrett's latest research 
Research led by the University of St Andrews: 'Healthy living gives skin a golden glow' 
David Perrett at TEDxGhent: 'In your face' 
 

 

 

https://risweb.st-andrews.ac.uk/portal/en/persons/david-ian-perrett(6a987feb-d99f-4e51-84ed-5f6d87c19dbc).html
https://risweb.st-andrews.ac.uk/portal/en/persons/david-ian-perrett(6a987feb-d99f-4e51-84ed-5f6d87c19dbc).html
https://risweb.st-andrews.ac.uk/portal/en/persons/david-ian-perrett(6a987feb-d99f-4e51-84ed-5f6d87c19dbc).html
https://news.st-andrews.ac.uk/archive/healthy-living-gives-skin-a-golden-glow
https://news.st-andrews.ac.uk/archive/healthy-living-gives-skin-a-golden-glow
https://www.youtube.com/watch?v=rVE6kZW88lc


Session 1 

Catherine Taylor, University of Bath, “An egocentric pipeline for transporting physical objects into 
virtual environments” 

The feeling of immersion in a virtual reality experience is greatly influenced by the way a participant 
interacts with the computer-generated (CG) environment.  Controllers have been the traditional tool for 
facilitating interaction, however, these offer limited tactile feedback and do not accurately model real-world 
interactions.  
 
In contrast, we propose an intuitive and immersive interaction mechanism where the behaviour of physical 
objects - captured using a robust tracking algorithm – are used to control virtual objects. Recent works have 
shown the power of neural networks for tracking rigid and non-rigid objects [1-4]. However, many state-of-
the-art works are restricted to only tracking rigid objects [2,4] or require large amounts of manually labelled 
training data [1,3], which is time consuming to obtain. In our work, we use a synthetic dataset generation 
algorithm which creates large, automatically labelled datasets and use this to train a CNN based architecture.  
 
The architecture – known as VRProp-Net+ [5] – predicts rigid and non-rigid model parameters from RGB 
images and the predicted parameters used to update the behaviour of a corresponding CG model.  The RGB 
images of the physical object are captured from a moving egocentric viewpoint (i.e. a camera attached to a 
VR HMD). The moving camera allows a dynamic capture volume which is not restricted to a preselected area 
defined by a motion capture system or multi-camera rig. Previous egocentric tracking approaches have 
focused on hand pose or have explored the interaction between hands and rigid objects [6-8]. We extend 
upon this and consider both rigid and non-rigid objects. 

Taylor, C., Cosker, D. 

[1] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik. End-to-end recovery of human shape and pose. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131,2018.  
 
[2] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn: A convolutional neural network for 6d object 
pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199, 2017.  
 
[3] S. Zuffi, A. Kanazawa, T. Berger-Wolf, and M. J. Black. Three-d safari: Learning to estimate zebra pose, 
shape, and texture from images” in the wild”. In International Conference on Computer Vision (ICCV), Oct. 
2019.  
 
[4] M. Andrychowicz, B. Baker, M. Chociej, R. J´ozefowicz, B. McGrew, J.W. Pachocki, A. Petron, M. Plappert, 
G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba. Learning dexterous 
in-hand manipulation. CoRR, abs/1808.00177, 2018.   
 
[5] C. Taylor, R. McNicholas, and D. Cosker, Towards An Egocentric Framework for Rigid and Articulated 
Object Tracking in Virtual Reality. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces 
Abstracts and Workshops (VRW) (pp. 354-359), 2020 
 
[6] F. Mueller, D. Mehta, O. Sotnychenko, S. Sridhar, D. Casas, and C. Theobalt. Real-time hand tracking 
under occlusion from an egocentric rgb-d sensor. In Proceedings of the IEEE International Conference on 
Computer Vision, pp. 1284–1293, 2017.  
 
[7] R. Pandey, P. Pidlypenskyi, S. Yang, and C. Kaeser-Chen. Efficient 6-dof tracking of handheld objects from 
an egocentric viewpoint. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 416–
431, 2018.  
 



[8] B. Tekin, F. Bogo, and M. Pollefeys. H+ o: Unified egocentric recognition of 3d hand-object poses and 
interactions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4511–
4520, 2019 
 
Doug Sands, University of Bristol, “Countershading for concealment against multiple backgrounds” 
 
Many animals are darker on their backs than their undersides, but the function of such ‘countershading’ has 
received little experimental investigation despite being proposed as a form of camouflage over 100 years 
ago (Poulton 1890; Thayer 1896). One hypothesis often proposed to explain the countershading of seabirds, 
and the motivation for colour schemes applied to many aircraft in WWII, is that different backgrounds need 
to be matched for different viewers: the back is seen from above against dark ground, but the underside is 
viewed against a light sky.  
 
I used field photography of controlled stimuli, computer-based image analysis and detection experiments to 
investigate how white belly plumage in seabirds could function as hunting camouflage, and under what 
environmental conditions would it be most cryptic when viewed from underwater. Under sunny conditions, 
79% of images had targets with low visibility against the sky, compared to 0.3% when it was cloudy. More 
than 90% of images taken when it was sunny and windy had low visibility targets. Given that no back-lit 
object can be as bright as its background (Penacchio et al. 2015), it was surprising that in 23% of the images, 
the target was undetectable. Experiments using the photorealistic 3D gaming software Unreal Engine 
confirmed these findings: direct sunlight causes glare, reducing detectability, and higher wind speed causes 
increased surface rippling and wave height, affecting refraction at the water surface and leading to distortion 
of the above-water image. 
 
Sands, D., Scott-Samuel, N. E., Cuthill, I. C. 
 
Penacchio, O., Lovell, P., Cuthill, I., Ruxton, G. & Harris, J. (2015) Three-dimensional camouflage: exploiting 
photons to conceal form. American Naturalist 186, 553-563. Poulton, E. B. (1890) The Colours of Animals: 
Their Meaning and Use. Especially Considered in the Case of Insects. Second Edition, London, Kegan Paul, 
Trench Trübner, & Co. Ltd. Thayer, A. H. (1896) The law which underlies protective coloration. Auk 13, 124-
129. 
 

Martin Bossard, Cardiff University, “Is allocentric and egocentric visual information used during 
ongoing reaching movement?”  
 
In everyday life humans and most other animals need to reach targets for various reasons and in different 
ways. The information used to achieve such tasks is still debated in the literature. While some studies 
stipulate that individuals only use information from the relationship linking them to their environment 
(egocentric), others have shown that relationships between objects in the environment (allocentric) are also 
used when participants have to reach a previously seen target.  
 
In two experiments, we developed a task in which relying on allocentric information was beneficial for 
successfully intercepting a moving target that remained visible. With a cursor controlled by their finger on a 
horizontal table, participants had to intercept the target as it moved across a textured background projected 
in front of them. During each attempt either the target, cursor, or background were perturbed individually, 
or all of them were perturbed simultaneously causing no relative changes between these three objects and 
consequently no change in allocentric information. Relying on allocentric information would therefore not 
elicit any response to the perturbation, whereas relying on egocentric information would give a response 
that resembles the combined responses to the three isolated perturbations.  
 
Despite the difference between where and how the finger and the cursor moved, our results show that 
participants responded in accordance with the individual perturbations. This was even so when the 
simultaneous perturbation was repeated many times, suggesting that allocentric spatial information cannot 
be used to control ongoing visually guided actions. 



 
Bossard, M., Crowe, E.M., Brenner, E. 

Daria Burtan, University of Bristol, “Visual discomfort, not image statistics, affect gait kinematics” 

Interacting with urban environments requires more attentional resources and thus cognitive processing load 
than interacting with nature (Kaplan, 1995), an effect that can even be found whilst looking at images 
(Berman et al., 2008). We recently showed that this is reflected in a change in gait kinematics: walking 
towards urban images as compared to nature images decreased walking speed and step length (Joyce & 
Leonards, 2017).  
 
However, it remains unclear what exactly causes the slowing of gait: differences in aesthetics preference 
between the two image categories, visual discomfort, or differences in basic image statistics? In line with 
evidence that nature images contain higher amounts of fractals than urban images (e.g. Ho et al., 2019) and 
high-fractal content increase perceptual fluency (Joye et al., 2016), we conducted two studies to establish 
whether the decrease in fractal dimensions increases cognitive load, affecting gait kinematics.  
 
Participants were asked to walk towards abstract images, which were parametrically varied in their fractal 
content. The task was to rate each image after the walk for visual discomfort (study 1) or for their likability 
(study 2). In the first study (n=20) visual discomfort, but not fractal dimension predicted walking speed and 
step length.  In the second study (n=19) neither fractal dimension nor aesthetics were predictive of gait 
changes.  
 
These data suggest that visual discomfort rather than image statistics or aesthetic preferences increase 
cognitive load, and thus affect gait kinematics. 
 
Burtan, D., Spehar, B., Burn, J. & Leonards, U. 

Amboni, M., Barone, P., Hausdorff, J.M. (2013) Cognitive Contributions to Gait and Falls: Evidence and 
Implications. Movement Disorders, 28(11), 1520–1533.  Berman, M. G., Jonides, J., & Kaplan, S. (2008). The 
cognitive benefits of interacting with nature. Psychological Science, 19(12), 1207–1212.   Ho, S., Mohtadi, A., 
Daud, K., Leonards, U., Handy, T.C. 2019 Using smartphone accelerometry to assess the relationship 
between cognitive load and gait dynamics during outdoor walking. Sci Rep, 9(1), 3119.   Joyce, K., & 
Leonards, U. (2017). Attention Restoration Theory in motion: Is gait impacted differently by visual exposure 
to natural and urban environments? European Conference on Visual Perception, 2017, Berlin.  Joye, Y., Steg, 
L., Unal, A.B., Pals, R. (2016). When complex is easy on the mind: Internal repetition of visual information in 
complex objects is a source of perceptual fluency. J Exp Psychol Hum Percept Perform 42(1), 103-114.   
Kaplan, S. (1995). The restorative benefits of nature: Toward an integrative framework. Journal of 
environmental psychology, 15(3), 169-182. 
 

Jing Gao, University of Bristol, “Rotated bounding box-based CNN for Holstein Friesian cattle 
detection” 

Current Holstein Friesian cattle detection systems using convolutional neural networks (CNN) are based on 
orthogonal (axis-aligned) bounding box detection [1,2]. In this work, we use rotated bounding boxes instead. 
Such approaches have previously been implemented in long object detection (e.g. ships [3,4]) to avoid multi-
object alignment. The use of Rotated Bounding-boxes reduces the fraction of background pixels considered 
and consequently, the average precision (AP) of species (cow) detection increases.  
 
This work is based on RetinaNet with a ResNet-50 backbone. We adapted its architecture by adding an angle 
parameter (0-359 degree) in addition to 4 coordinate parameters. 8 anchors are used per position with a 
ratio of 1:2.5, and each anchor has an angle of 45 degrees compared with its neighbouring anchors.  
 
During training, we also use angle difference instead of intersection over union to speed up the filtering of 



positive anchors. We use 3872 and 1070 in-barn images from the University of Bristol's Wyndhurst farm for 
training and testing respectively. This dataset contains 4950 and 1253 individuals. With a non-maximum 
suppression (NMS) threshold of 0.28 rather than common 0.4-0.5, the AP is 98.8%.  
 
Jing, G. 
 
[1] Andrew, W., Greatwood, C. and Burghardt, T., 2019. Aerial Animal Biometrics: Individual Friesian Cattle 
Recovery and Visual Identification via an Autonomous UAV with Onboard Deep Inference. arXiv preprint 
arXiv:1907.05310. [2] Zin, T.T., Phyo, C.N., Tin, P., Hama, H. and Kobayashi, I., 2018, March. Image 
technology-based cow identification system using deep learning. In Proceedings of the International 
MultiConference of Engineers and Computer Scientists (Vol. 1, pp. 236-247). [3] Wang, Y., Zhang, Y., Zhang, 
Y., Zhao, L., Sun, X. and Guo, Z., 2019. SARD: Towards Scale-Aware Rotated Object Detection in Aerial 
Imagery. IEEE Access, 7, pp.173855-173865. [4] Xu, Y., Fu, M., Wang, Q., Wang, Y., Chen, K., Xia, G.S. and Bai, 
X., 2020. Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE 
Transactions on Pattern Analysis and Machine Intelligence. 

 

Hugo Hammond, University of Bristol, “Developing continuous multidimensional measurements of 
audience immersion” 

A wide range of media (be it a book, film, computer game, etc.) can result in immersion. It is often assumed 
that this is a result of the interplay between various cognitive processes. However, most research into 
immersion relies on post-viewing questionnaires which cannot tap directly into these cognitive processes or 
dynamically measure how immersion unfolds over the course of the interaction.  
 
We have been developing a methodology for measuring immersion in a continuous, multidimensional way. 
Our dimensions (attention, emotion, memory) are collected using minimally invasive behavioural and 
physiological measures.   
 
In this talk I will present data from an exploratory study which demonstrates the utility of these measures 
and looks at the interactions between them. We show that the individual measures are correlated across 
participants, suggesting they capture a shared response to the content. We also indicate the different 
measures converge at common time points in response to the content. However, the different measures are 
not equally correlated suggesting that they may be measuring different aspects of the immersive experience. 
 
Hammond, H., Bull, D., & Gilchrist, I. 

Di Ma, University of Bristol, “BVI-DVC: A training database for deep video compression”  

Deep learning methods are increasingly being applied in the optimisation of video compression algorithms 
and can achieve significantly enhanced coding gains, compared to conventional approaches. Such 
approaches often employ Convolutional Neural Networks (CNNs) which are trained on databases with 
relatively limited content coverage.  
 
In this work, a new extensive and representative video database, BVI-DVC, is presented for training CNN-
based coding tools. BVI-DVC contains 800 sequences at various spatial resolutions from 270p to 2160p and 
has been evaluated on ten existing network architectures for four different coding tools. Experimental 
results show that the database produces significant improvements in terms of coding gains over three 
existing (commonly used) image/video training databases, for all tested CNN architectures under the same 
training and evaluation configurations. 
 
Ma, D., Zhang, F. and Bull, D.R. 
 

 



Session 2 

Karin Kjernsmo, University of Bristol, “Do bees like shiny things?” 

Gloss (specular reflection), to many vision scientists, is a nuisance: noise that corrupts the colour reflectance 
signal; to be avoided by suitable measurement geometry. However, gloss can convey information about 
surface properties, so should it be added to the visual properties, such as colour and shape, that flowers use 
to attract the attention of passing pollinators?  
 
Indeed, gloss displayed by flowers is generally often limited to patterns, as opposed to fully covering the 
petals, which raises another question: if flowers are glossy to attract attention, why not be as glossy as 
possible?  
 
In this talk, we will use data from experiments involving bumblebees and artificial flowers to show how 
varying levels of gloss affects shape recognition, choice and learning. Intriguingly, while we found that the 
bees could indeed learn to identify patterns of gloss, we also found that due to the inherent variability of the 
visual signal from completely glossy surfaces, it also has the potential to deceive and confuse pollinators. 
Therefore, floral advertising is a delicate balance between dazzling the customers and being recognisable, 
and plants seems to have evolved a balance designed to attract their most desired clients. 

Kjernsmo, K., Harrap, M., Hall, J.R., Cuthill I.C., Nadia Khuzayim, N.,  Da Cunha Lobo, M., Doyle, C., 
Wainwright,B.,  Tálas, L.,  Rands, S.A.,  Scott-Samuel, N.E. & Whitney, H.M. 

 
Christian Wallis, Cardiff University, “Replicability and patterns of individual differences across four 
popular eye-tracking tasks” 

In order to facilitate stable visual perception, the brain must compensate for the effect of eye-movements 

on the retinal image. Extra-retinal signals which contain information about the eye’s position and recent 

movements play a vital role in this stabilisation, and various eye-tracking tasks have been designed and 

posited to measure the use of this extra-retinal information.  

 

This study chose four such tasks with the aim of investigating the replicability of earlier results while also 

exploring patterns of individual differences. Alongside the antisaccade task which has been posited as a 

possible measure of extra-retinal signals (Thakkar, K.N. and Rolfs, M., 2019. Disrupted corollary discharge in 

schizophrenia: Evidence from the oculomotor system. Biological Psychiatry: Cognitive Neuroscience and 

Neuroimaging.), three other tasks were used that explore saccadic displacement, smooth visual pursuit, and 

saccadic shift.  

 

Results so far show strong correlations between individual differences in the smooth visual pursuit and 

saccadic displacement tasks, r(25) = .64, p < .001, but no significant relationships emerge between any of the 

antisaccade results and the other tasks. Exploratory factor analysis similarly reveals three factors underlying 

inter-task correlations, around one of which clusters results from the smooth visual pursuit and saccadic 

displacement tasks. These results support the use of those two tasks in studies measuring extra-retinal 

signals but would otherwise exclude the antisaccade task as having any meaningful overlap in that role. 

Wallis, CH 

 

Milton Montero, University of Bristol, “Deep generative models as perceptual front-ends for decision-

making” 

Evidence integration models such as the Drift-diffusion model (DDM) are extremely successful in accounting 
for reaction time distributions and error rates in decision making. However, these models do not explain 
how evidence, represented by the drift, is extracted from the stimuli. Models of low-level vision, such as 
template-matching models, propose mechanisms by which evidence is generated but do not account for RT 



distributions.  
 
We propose a model of the perceptual front-end, implemented as Deep Generative Model, that learns to 
represent visual inputs in a low-dimensional latent space. Evidence in favor of different choices can be 
gathered by sampling from these latent variables and feeding them to an integration-to-threshold model. 
Under some weak assumptions this architecture implements an SPRT test. Therefore, it can be used to 
provide an end-to-end computational account of reaction-time distributions as well as error-rates.  
 
In contrast to DDMs, this model can explain how drift and diffusion rates arise rather than infer them from 
behavioural data. We show how to generate predictions using this model for perceptual decisions in visual 
noise and how these depend on different architectural constraints and the learning history. The model thus 
provides both an explanation of how evidence is generated from any given input and how architectural 
constraints and learning affect this process. These effects can then be measured through the observed error 
rates and reaction-time distributions. We expect this approach to allow us to bridge the gap between the 
complementary, yet rarely interacting literatures of decision-making, visual perceptual learning, and low-
level vision/psychophysics. 
 
Montero, M; Costa, R; Bowers, J; Ludwig, C; Malhotra, G 

 
Angeliki Katsenou, University of Bristol, “Predicting the rate-quality convex hull across resolutions 
for adaptive video streaming” 

A challenge that many video providers face is the heterogeneity of networks and display devices for 
streaming, as well as dealing with a wide variety of content with different encoding performance. In the past, 
a fixed bit rate ladder solution based on a "fitting all" approach has been employed. However, such a 
content-tailored solution is highly demanding; the computational and financial cost of constructing the 
convex hull per video by encoding at all resolutions and quantization levels is huge.  
 
In this paper, we propose a content-gnostic approach that exploits machine learning to predict the bit rate 
ranges for different resolutions. This has the advantage of significantly reducing the number of encodes 
required. The first results, based on over 100 HEVC-encoded sequences demonstrate the potential, showing 
an average Bj{\o}ntegaard Delta Rate (BDRate) loss of 0.51\% and an average BDPSNR loss of 0.01 dB 
compared to the ground truth, while significantly reducing the number of pre-encodes required when 
compared to two other methods (by 81\%-94\%). 
 
Katsenou, A.; Sole, J.; Bull, D. 

Mubaraka Muchhala, University of Bristol, “The geometry of high-level colour space”. 

To communicate about the colours in our environment, humans categorise the continuous colour space, and 

the categories in our language bias our perception of colours.  

 

We propose that these biases facilitate the perception of noisy photoreceptor signals by directing observers 

towards the most likely conclusions. The properties of high-level colour space were estimated by testing 

participants’ colour memory across hue and saturation for two delay lengths. We predicted that responses 

would be biased towards category foci, and that categorical biases would be larger for the longer delay.  

 
Muchhala, M., Scott-Samuel, N., Baddeley, R. 
 

 



Aaron Zhang, University of Bristol, “Enhancing video compression through deep learning” 
 
This presentation introduces a new Convolutional Neural Network (CNN) based post-processing approach for 
video compression, which is applied at the decoder to improve the reconstruction quality. This method has 
been integrated with the Versatile Video Coding Test Model (VTM) 4.0.1 and evaluated using the Random 
Access (RA) configuration using the Joint Video Exploration Team (JVET) Common Test Conditions (CTC).  
 
The results show coding gains on all tested sequences at various spatial resolutions over different 
quantisation parameter ranges, with average bit rate savings of 3.90% and 4.13%, when PSNR and VMAF are 
used as quality metrics respectively. The computational complexities of different CNN architecture variants 
have also been investigated. 
 
Zhang, F., Feng, C. and Bull, D. R. 
 
Zhang, F.; Feng, C. & Bull, D. R. ENHANCING VVC THROUGH CNN-BASED POST-PROCESSING Proc. IEEE Int 
Conf. on Multimedia & Expo, 2020 
 

Session 3 

Dunia Gonzalez, University of Exeter, “Colour and motion vision in stomatopod crustaceans” 

Stomatopod crustaceans have evolved complex visual systems. Their eyes are separated into hemispheres 
and bisected by a midband, which contains photoreceptors that have evolved up to twelve spectral 
sensitivities in the visible and UV range. However, their visual system does not facilitate enhanced spectral 
discrimination.  
 
Recently, it was proposed that stomatopods detect colours as distinct excitation patterns that are processed 
without undergoing spectral comparisons or input from hemisphere photoreceptors involved in luminance 
vision. Such a system would allow for enhanced colour constancy and processing speeds, resulting in rapid 
responses to colour regardless of the lighting in the environment.  
 
Motion vision was examined using the stabilising (optokinetic) response to motion. The optokinetic action 
spectrum of two shallow-water stomatopod species, Gonodactylus chiragra and Pseudosquilla ciliata, were 
recorded to determine the spectral sensitivities of their motion vision. The spectral sensitivity curves of both 
species matched those of their hemisphere photoreceptors, suggesting that motion detection is dependent 
on intensity, rather than colour vision. Additionally, the innate response to colour when selecting a burrow 
refuge was examined. Stomatopods may avoid entering burrows occupied by intraspecific competitors as 
their brightly coloured carapaces and appendages could play important roles in signalling their presence to 
conspecifics. P. ciliata, but not G. chiragra, avoided colours reflected from the carapaces of conspecifics.  
 
Additionally, colour preferences when selecting a burrow occurred independently of intensity. The findings 
of both the optokinetic and burrow choice experiments demonstrate clear functional partitioning of the 
stomatopod visual system across different eye regions and for different tasks. 
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Sandra Winters, University of Bristol, “Simulating the evolution of inter-specific mating signal 
diversity in guenons” 

When closely related species overlap, selection for discrimination between con- and heterospecific mates 
can lead to the evolution of species-typical mating signals and associated mating biases. Such processes can 
be important drivers of animal diversity. We simulate this process using a machine learning approach in 
which mating signals, modeled as points in phenotype space, evolve across evolutionary time using a genetic 
algorithm and selection for various types of mate choice.  
 
Our simulations are based on mating signals in guenons, a recent primate radiation in which species 
commonly form mixed-species groups and exhibit colorful and diverse face patterns hypothesized to 
function in the maintenance of reproductive isolation. We show how diversification in isolation and mate 
choice on secondary contact can induce rapid phenotypic diversification in guenons, resulting in face 
patterns that are distinctive between species but stereotyped within species, similar to those observed in 
guenons today. Strong selection against hybrids is key to diversification, with even low levels of hybrid 
reproduction typically lead to the merging of populations on secondary contact.  
 
Our results show how phenotypic evolution plays out across ecological scenarios in guenons, and ultimately 
support a role for reinforcement in the evolution of guenon face patterns. This research highlights how 
simulated evolution grounded in realistic species biology can generate insights into the evolution of 
phenotypic diversity. 
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Jake Deane, CAMERA - University of Bath, “DogDetector: animal segmentation using synthetic 
images and 3D generative models” 

Segmentation is one of the classic research areas in computer vision. Recent advances have made use of 
deep learning models to achieve state of the art performance, taking advantage of greater computational 
power. However, these methods typically require large sets of training data, which for some object classes – 
such as animals – are not available.   
 
In recent years however synthetic data has been used to train machine learning models that are able to 
compete with their peers trained on real data (Varol et al. 2017; Dunn et al. 2019; Mu et al. 2019).  In this 
paper, we present a generative 3D canine model which we use to create synthetic data for refining 
segmentation models via a generative adversarial frame-work (Goodfellow  et  al. 2014),  using  real  and  
synthetic  canine images and segmentation maps where the synthetic data was generated by the 
aforementioned generative 3D canine model.   
 
We performed experiments on three datasets with 9 permutations of generator and discriminator to 
investigate the effect of synthetic data on our segmentation refinement experiments compared to real data.  
We found that it is possible to refine” off the shelf” baseline semantic segmentation models (Long, 
Shelhamer and Darrell 2014; Chen et al. 2017; He et al. 2018) to deliver superior performance for a single 
asset class using synthetic data to augment existing datasets. 
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